Verifiable Computing Project

“How do we build trusted, open hardware?”

Joyce Ng
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What will NOT be covered

* Computer Architecture
* Digital Design
* VLSI design



Why care about verifiable computing?

What do these devices have in common?



Why care about verifiable computing?

They all are computers!



Why care about verifiable computing?

* End user:
"How do | know that the devices | use are

trustworthy?”

Chip designer: “How do | know that the chips |
get from the fab are exactly as per designh and
not tampered with?



Why care about verifiable computing?
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Real life example — iPhone X compromised!



Why care about verifiable c

Phone known to be compromised
as adversary messages contact
with things said on a live Zoom call

Police forensics unable to find entry
point nor traces of stalkerware

Phone not jailbroken by owner

Many consumer might as well be
black boxes to their owners!

omputing?
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Have a good rest ™ o) o1 i

Will be hearing from you reaaaaal soon
8:07 PM v

| Will be hearing from you reaaaaal soon

Imma so looking forward to hear your mother
while she is experiencing
the worst pain that a human being can suffer.

| Imma so looking forward to hear your mother mo...

Yeah yeah, something original please
8:09 PM

Bye 0| 809 PM v

If Joyce or think they're gonna pin me

down with the presence of the spying app on
phone, | am ready to remote-wipe the

spying app to not leave any trace for the cops.

Nic
If Joyce or think they're gonna pin me dow...
While a few of you blinking idiots are breaking
your noggins over blinking lights, | can
hear everything through the microphone on her
phone, I'll soon remote-wipe the spying app on
phone when the cops go for her phone.



Why care about verifiable computing?
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Why care about verifiable computing?
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B contact B contact
i metal 1 B Metal 1
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(a) Original (b) Trojan

Try spotting the difference!



Why care about verlflable computlng’?
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Why care about verifiable computing?

Simplified view of the Rate Matcher

—

State register k
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v AES RNG output

» Rater Maicher uses AES in counter mode
« Stage registers k and ¢ contain truly random numbers
« Stage registers k and c¢ are updated after iteration



Why care about verifiable computing?

Trojan Rate Matcher ey
ERs
State register k
ojrrjopr ooy ... |
' 128
State register ¢ 108 .
Ci C4cs| C4 G5 Cq 1 00 1| ... | AES RNG output
r 128
; B

» Modify registers of k so that they output a constant

« Modify 128-n registers of ¢ in the same way

= The output or the RNG depends only on n random bits!

— For n=32 the RNG still passes NIST random number test suit

Secret keys generated using this Trojan RNG insecure



Why care about verifiable computing?

Trojan area
TR 0 e

RNG with dopant level trojan



Why care about verifiable computing?

random key K. The attacker has a chance of 1/2!2® to correctly guess a random
number resulting in an attack complexity of 128-bits. The goal of our Trojan is
to reduce the attack complexity to n bits, while being as stealthy as possible.
This is achieved by cleverly applying our dopant-based Trojan idea described
in Section 2 to internal flip-flops used in the rate matcher. In the first step we
modify the internal flip-flops that store K in a way that K is set to a constant.
In the second step the flip-flops storing ¢ are modified in the same way, but n
flip-flops of ¢ are not manipulated. Hence, only (128 —n) flip-flops of ¢ are set to a
constant value. This has the effect that a 128-bit random number r depends only
on n random bits and 1284 (128 —n) constant bits known to the Trojan designer.
The owner of the Trojan can therefore predict a 128-bit random number r with a
probability of 1/2™. This effectively reduces the attack complexity from 128-bit
down to n bits. On the other hand, for an evaluator who does not know the

Trojan constants, r looks random and legitimate since AES generates outputs
with very good random properties, even if the inputs only differ in a few bits.




Why care about verifiable computing?

In [9] it is stated that “This BIST logic avoids the need for conventional on-
chip test mechanisms (e.g., scan and JTAG) that could undermine the security
of the DRNG.” This fact is also mentioned in an Intel presentation in which it is
argued that for security reasons the RNG circuitry should be free of scan chains
and test ports [24]. Therefore, to prevent physical attacks, only the BIST should
be used to detect manufacturing defects. From an attacker’s point of view, this
means that a hardware Trojan that passes the BIST will also pass functional
testing. Although Intel’'s BIST is very good at detecting manufacturing and
aging defects, it turns out that it cannot prevent our dopant Trojans. One simple
approach to overcome the BIST would be to add a dopant Trojan into the BIST
itself to constantly disable the error flag. However, it could be very suspicious if
the BIST never reports any manufacturing defects.

To pass the BIST, the Trojan rate matcher needs to generate outputs r,....r}
during the BIST that have the same 32-bit CRC checksum as the correct outputs
r1,...,74. Since the input to the rate matcher during the BIST is known, the
Trojan designer can compute the expected 32-bit CRC checksum. He then only
needs to find a suitable value for the Trojan constants ¢[1 : 128] and K|1 :
128 — n], which generate the correct CRC checksum for the inputs provided
during the BIST. Since the chance that two outputs have the same 32-bit CRC
is 1/232 the attacker only needs 232 /2 tries on average to find values for ¢ and K
that result in the expected 32-bit CRC. This can easily be done by simulation. By
cleverly choosing ¢ and K the Trojan now passes the BIST, while the BIST will
still detect manufacturing and aging defects and therefore raises no suspicion.




Why care about verifiable computing?

* Dopant level attacks cannot be found even with
Scanning Electron Microscopy!

* Only way to detect is to compare production chips
with “golden chip”

* Hard to know if chip is even tampered unless you
already are looking out for a specific attack!

* Difficult to inspect fab process; easy for state level
actor to carry out said attack



Why care about verifiable computing?

* Unfortunately, an open

source chip fabrication -\ one
process doesn’t yet exist =20 e
* Work is being done in that a
space. (see image!) i - twelve Z2
_ : g , 1200 transistors
(2021)

* What can we do for now?




Sam Zeloof DIY Z2 Chip — Photos!
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- Sam Iof Chip Lab




Why use FPGASs?

* General Purpose device

* FPGA used in various devices and applications,
thus difficult to tamper in silicon

* Allows a user to verify the correct operation of a
device by inspecting HDL (Hardware Description
Language) code.

* User can customize/hack their devices if desired.



Why use FPGAs? - FPGA Architecture
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use FPGAs? - FPGA Architecture
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Why use FPGAs? - FPGA Architecture

Shared Block-Level Controls
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Lattice ICE40 — Programmable Logic Block



Why use FPGAs? - FPGA Architecture

vcelo

/0O Bank 0,1, 2, or 3
Voltage Supply
s )
Enabled ‘1" —| ? = g'fpm
Disabled ‘0" — Enabled
g Pull-up
OE—»
VCCIO_0
= Pull-u l
Wltemal Core -|_ EE blp
[ I OUTCLK e
I/O Bank 0
'_\ General-Purpose I/0 /
OUT —
i PIO PAD
@] S
o = OUTCLK Latch inhibits — N
ca Ll 7s] -0 = iCEGATE switching for R
o' x0 x 9 | o HOLD HD  lowest power i
_I—— = c & O
Q @ [ = [}
HEE dg|| 'S
= lleB 2o
. T gl N
w [}
O}
/ ] GBIN pins optionally
INCLE connect directly to an
/ /O Bank 2 / < associated GBUF global
General- Purpose /[e] L B )

Programmable Input/Qutput
VCC SPI
\.-"CCIO 2 D Statically defined by configuration program

Lattice ICE40 — I/O Bank and |/O Cell



Existing Works

Precursor
Mobile, Open Hardware, RISC-V System-on-Chip (SoC) Development Kit

u "

¥ FPGA Boards
¥ Mobile Devices
Q¥ Security & Privacy

$443,557 isea
of $220,000 goal
201%* Funded! Order Below
31 Dec 15 2020 636
updates funded on backers

In stock. Order now, ships within three business days.

$500

View Purchasing Options

Bunnie Studios Precursor



Existing Works
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Existing Works
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FPGA Design Flow

Xilinx Design Flow

Plan & Budget ||:> Create Code HDL RTL

Schematic Simulation

Implement { }

Translat b, | Functional Synthesize

ranssaie e Simulation 1 to create netlist
Map
= =
Place & Route

Attain Timing Timing I—\ Generate
Closure — Simulation [~ BIT File

Configure
FPGA

$IXLNX

For Academic Use Only

@ 2011 Xilinx, Inc. All Rights Reserved



FPGA Design Flow - Processes

* Synthesis:
Converts HDL code into netlist file describing logical
connections between blocks.

* Place and Route (PnR):

Takes synthesized design and turns it into a physical
implementation based on the target FPGA device.

* Bitstream Generation:
Generates a bitstream file containing instructions for
Configurable Logic Blocks (CLB) on target device.



Toolchains — Process Tools
* Synthesis - Yosys

* Place and Route - nextpnr

* Bitstream Generation — various projects under
FAPGA



Toolchains - F4PGA
* Aims to be the “GCC” for FPGASs

* Open source FPGA toolchain

* Focused on FPGA architecture definitions

* Supports Xilinx 7-Series, Lattice iICE40 and
ECP5, as well as QuickLogic EOS-S3



Toolchains

- F4PGA

Frontend Backend
N
Synthesis FPGA tools
f goTTTTTTTmTmm s mm T ‘I
E Project lceStorm '
nextpnr S ‘
Yosys S
- i Project X-Ray :
& n Y e e e e o e e e o .
Verilog to : Project Trellis :
Routing ‘..':::::::::::::::._.'.'._._.'.'._.'.'.'._.'::

Architecture definitions

Verification, Testing
& Simulation




Toolchains - F4PGA

Project Project Project QuickLogic
Icestorm Trellis X-Ray Database
Basic Tiles: v v v v
- Logic v v v v
- Block RAM v v % v
Advanced Tiles: v v v v
- DSP v v v
- Hard Blocks v v v
- Clock Tiles v v v v
- 10 Tiles v v v v
Routing: v v v v
- Logic v v v v
- Clock v v v v

~4PGA Device Support Status



Toolchains - LiteX

Framework for building FPGA SoCs

Supports building various RISC-V and other soft
core CPUs

Uses Migen, a Python based HDL

Easily customize your own SoC design with various
peripheral cores (serial, PCle, Ethernet, etc)



Toolchains - LiteX

10 Open source IPs

LiteDRAM LiteEth

..... 7 more ----- |LiteVideo

---------------------------

provides

4 Softcores [2018]

extends

LiteX

modules FHDL =1 Migen |4¢—
provides

Build Utils SoC Boards

altera server cores platforms

xilinx intercon

lattice term integration targets

microsemi sim software

yosys Utilities

LM32 PicoRV32
VexRiscV Morlkx
supports
supports

Arty7 TinyFPGA BX

Nexys4 KCU105 etc...
KC705 Versa ECP5

21 Boards [2018]




Toolchains - LiteX

[dev/ttyUSBX -= »  UART —
VexRiscv CPU LiteDRAM = ™ D
— , {w/ MMU) ,
| [ Spore i) ROM 1GB DDR3 16-bit
0 [ Spare [J5)
=<— LART RX (K2
5; ™~ ILu»ir-:TT;vc EJZJ] D D D
T LiteSATA D
O O SRAM MMAP ‘ DMA ‘ D D D
J [ veg(3.av)
17| By [ ;
A = 100 SUBR EapalE AT SATA 3Gbps SSD
L S ano Y ]
AXI AXI
User Design
FPGA

Pico-EZmate connectors

EﬂJO‘ﬁ(,Do/ Linux SoC on Acorn CLE215+ Bulle with LE;X

Build your hardware, easily!

Example SoC design on Acorn CLE-215+ board




Toolchains - LiteX

o ("clkZew", @,

23 Subsignal("p"”, Pins("J19"), IOStandard("DIFF_SSTL15")),
Subsignal("n", Pins("H19"), IOStandard{"DIFF_SSTL15"))

).

("user_led",

0Standard("LVCMOS33") ),
("user_led", OStandard("LVCMOS33")),
("user_led", 0Standard("LVCMOS33")),
("user_led", OStandard("LVCMOS33")),
SPIFlash.
("flash_cs_n", €, Pins("T19"), IOStandard("LVCMOS33")),
("flash", @,
Subsignal("mosi”, Pins("P22")),
Subsignal("mise", Pins("R22"}}),
Subsignal("wp", Pins("P21"}}),
Subsignal("hold", Pins("R21"}),
I0Standard("LVCMOS33")
4 1.
42
43 PC
44 ("pcie_clkreq_n", @, Pins{"G1"), I0Standard("LVCMOS33"}),
45 ("pcie_x4", @,
46 Subsignal("rst_n", Pins("J1"), IOStandard("LVCM0533"), Misc("PULLUP=TRUE")),
47 Subsignal("clk_p", Pins("F&"})),
48 Subsignal("clk_n", Pins("E6"}),

Subsignal{"rx_p", Pins{"B10 B8 D11 D9")),
Subsignal("rx_n", Pins("A10 A8 Ci1 C9")),
Subsignal("tx_p", Pins("B6 B4 D5 D7")),
Subsignal("tx_n", Pins{"AE6 A4 C5 C7")),

56 ("ddram", @,

Subsignal("a", Pins(
"M15 L21 M16 L18 K21 M18 M21 N2e",
"M20 N18 J21 M22 K22 N18 N22 J22"),

Acorn CLE-215+ board definition




Implementation - Processor

Why RISC-V?

Open Source ISA
<50 instructions for RV32I

Frozen Base Instructions +
Standard Instructions

Custom extensions possible

A 4

RISC

®



Implementation - Processor

V32l Base Instruction S

imm|[31:12 rd 0110111 LUl
imm|31:12 rd 0010111 AUIPC
in1m[20|10:l\11\19:l2] rd 1101111 JAL
imm[ll:D] rsl 000 rd 1100111 JALR
imm|[12[10:5 rs2 rsl 000 imm[4:1]11 1100011 BEQ
imm[12]10:5 rs2 rsl 001 imm[4:1]11 1100011 BNE
imm|[12]10:5 rs2 rsl 100 imm[4:1]11 1100011 BLT
imm|[12]10:5 rs2 rsl 101 imm[4:1]11 1100011 BGE
imm[12]10:5 rs2 rsl 110 imm[4:1[11 1100011 BLTU
imm[12]10:5 rs2 rsl 111 imm[4:1]11 1100011 BGEU
imm[11:0 rsl 000 rd 0000011 LB
imm(11:0 rsl 001 rd 0000011 LH
imm|11:0 rsl 010 rd 0000011 LW
imm|[11:0 rsl 100 rd 0000011 LBU
imm[11:0] rsl 101 rd 0000011 LHU
imm(11:5 rs2 rsl 000 imm(4:0 0100011 SB
imm[11:5 rs2 rsl 001 imm[4:0 0100011 SH
imm|11:5 rs2 rsl 010 imm]|4:0 0100011 SW
imm|11:0 rsl 000 rd 0010011 ADDI
imm|11:0 rsl 010 rd 0010011 SLTI
imm|[11:0 rsl 011 rd 0010011 SLTIU
imm|[11:0 rsl 100 rd 0010011 XORI
imm(11:0 rsl 110 rd 0010011 ORI
imm|[11:0 rsl 111 rd 0010011 ANDI
0000000 shamt rsl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 SRLI
0100000 shamt rsl 101 rd 0010011 SRAI
0000000 rs2 rsl 000 rd 0110011 ADD
0100000 rs2 rsl 000 rd 0110011 SUB
0000000 rs2 rsl 001 rd 0110011 SLL
0000000 rs2 rsl 010 rd 0110011 SLT
0000000 rs2 rsl 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 XOR
0000000 rs2 rsl 101 rd 0110011 SRL
0100000 rs2 rsl 101 rd 0110011 SRA
0000000 rs2 rsl 110 rd 0110011 OR
0000000 rs2 rsl 111 rd 0110011 AND
fm | pred succ rsl 000 rd 0001111 FENCE
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK




Implementation

ABOUT - PRODUCTS -

Acorn CLE 215

Maximize hash rate to power ratio

Acorn is the first-ever cryptocurrency mining accelerator card. By using
best-in-class Xilinx FPGA chips in an M.2 slot, Acorn CLE-215 does
everything the CLE-101 does while providing a boost to core-intensive
mining using more than double the FPGA logic. Acorn CLE-215 makes
mining algorithms like X16r and Lyra?REv2 on GPUs more efficient.
ALGORITHMS

) ETHASH ) CRYPTONIGHT V1 ) LYRA2REV2 ) X16R

$274.99 USD

ORDER NOW

Acorn SQRL CLE-215+



Implementation

20-pin DF52 6 pin Pico-EZmate 6 pin Pico-EZmate
4x 2.5V LVDS pairs CanTnﬂitor 4x multi-purpose /0
4x multi-purpose (3.3V digital/Analog)
—a ¢
Status
LEDs
Artix-7 484pin 4x PCle gen2 | Mm.2 key
R e
XCT7A200T-2FBG484 M
Power supplies -
12W FPGA core LED
512Mb x16 4 user-controlled 128Mb User-controlled
DDR3 LEDS FLASH LEDs (3)
NiteFury, M.2 2280 Key M

Acorn SQRL CLE-215+ (Block Diagram)



Implementation

Artix-7 FPGA Product Table

XC7A12T | XCTA15T || XC7A25T | XCT7A35T | XCT7AS0T | XCT7A75T | XC7AT00T [eiermviiva)

XC7A35T W § XC7AR0T W § XC7A75T W § XC7A100T W § XC7A200T |

Logic Cells 33,280 52,160 75,520 101,440 215,360

DSP Slices 90 120 180 240 740
1,800 2,700 3,780 4,860 13,140

GTP 6.6Gb/s Transceivers 4 4 g g 16

Xilinx Artix-7 Family

[ COMPARE ]Sneset
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Demo



Future Projects

* RISC-V Laptop:
Verifiable laptop design using RISC-V on FPGA for processor.

* Airwave Project:
Investigation into cellular device security; with focus on cellular
communications. Possible phone implementation based on

Software Defined Radio (SDR) for baseband?



Future Projects

QEMU
e View
File Edit View Search Terminal Help

postmarketOS

Loading...

(vdal): mounted file

Messing with postmarketOS for Airwave Project




References and Resources

Precursor Wiki: https://github.com/betrusted-io/betrusted-
wiki/wiki

FAPGA: https://f4pga.org/

LiteX: https://github.com/enjoy-digital/litex

Bootstrapping a Libre, Self-Hosting RISC-V Computer:
https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-
Meeting-2021-03-31-13h30-Gabriel-Somlo.pdf



References and Resources

* Stealthy Dopant-Level Hardware Trojans:
https://sharps.org/wp-content/uploads/BECKER
-CHES.pdf



Where to find me:

* Twitter: @quantumcatgirl
Mastodon: @sleepyowl@chaos.social

For direct contact:
Email: joyce ng@hyantechnologies.com
Discord: Schrodinger's Catgirl (Joyce)#3724



Questions?
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